Skip to main content

Environmental Chemistry Complete Notes..

Environmental Chemistry Environmental chemistry: It is the branch of chemistry that deals with the study of various chemical processes taking place in the various segments of the environment. Broadly speaking, it is the study of the sources, transportation, reactions, effects and the ultimate of the chemical species occurring in one or more segments of the environment. Components of Environment : Atmosphere:   This comprises a blanket of gaseous layer around earth. Hydrosphere :  This comprises about 96% of earth’s surface & includes all   sources of water like oceans rivers lakes, glaciers, ground water etc. Lithosphere :  It refers to earth’s solid crust containing the outer mineral cover. It comprises soil, minerals, organic matter etc.  Biosphere:   It refers to the domain of living organism in covalent with atmosphere hydrosphere as well as lithosphere.    Environmental pollution...

Octane numbers



Octane numbers:

Automobile fuels are graded using octane numbers, which measure the combustibility of a fuel. A high octane number means that a fuel requires a higher temperature and/or higher pressure to ignite. Racing cars with high-compression engines usually run on pure methanol, which has an octane number of 120.

 Gasoline with too low an octane number can cause “knocking” in the engine of a car, when the fuel ignites too easily and burns in an uncontrolled manner. Knocking lowers fuel efficiency, and it can damage the engine.

As early as 1925, two of the first automobile engineers became aware of the need to improve the octane number of fuels. Charles Kettering advocated the use of a newly developed compound called tetra-ethyl lead, Pb(C2H5)4. This compound acts as a catalyst to increase the efficiency of the hydrocarbon combustion reaction. Henry Ford believed that ethanol, another catalyst, should be used instead of tetra-ethyl lead. Ethanol could be produced easily from locally grown crops. As we now know, ethanol is also much better for the environment.

Tetra-ethyl lead became the chosen fuel additive. Over many decades, lead emissions from car exhausts accumulated in urban ponds and water systems. Many waterfowl that live in urban areas experience lead poisoning. Lead is also dangerous to human health.

Leaded fuels are now banned across Canada. In unleaded gasoline, simple organic compounds are added instead of lead compounds. These octane-enhancing compounds include methyl-t-butyl ether, t-butyl alcohol, methanol, and ethanol. Like lead catalysts, these compounds help to reduce engine knocking. In addition, burning ethanol and methanol produces fewer pollutants than burning hydrocarbon fuels, which contain contaminants. Since they can be made from crops, these alcohols are a renewable resource.

By:
Anjani Kumar Singh

Comments

Post a Comment

Popular posts from this blog

How to Name Hydrocarbons

To name a hydrocarbon, follow the steps below: Step 1: Find the root:   Identify the longest chain or ring in the hydrocarbon.  If the hydrocarbon is an alkene or an alkyne, make sure that you  include any multiple bonds in the main chain. Remember that the  chain does not have to be in a straight line.  Count the number of  carbon atoms in the main chain to obtain the root. If it is a cyclic  compound, add the prefix -cyclo- before the root. Step 2: Find the suffix:  If the hydrocarbon is an alkane, use the suffix -ane.  Use -ene if the hydrocarbon is an alkene. Use -yne if the hydrocarbon is an alkyne. If more than one double or triple bond is present, use  the prefix di- (2) or tri- (3) before the suffix to indicate the number  of multiple bonds. Step 3: Give a position number to every carbon atom in the main chain: Start from the end that gives you the lowest possible position  number for the double or ...

Unit-9 HYDROGEN complete notes..

HYDROGEN    Introduction:  Hydrogen is the first element of periodic table. It has been placed at the top of alkali metal family in group 1 of s-block although it is not a member of the group. It is a typical non-metal and exists as a diatomic molecule (H 2 ) called dihydrogen in order to distinguish it from atomic hydrogen. It was discovered by Henery Cavendish in 1766 by the action of dilute H 2 SO 4 on iron. It was named ‘inflammable air’, Lavoisier gave it the name hydrogen (Creek: Hydra = water, gennas = producer]. It occurs in Free State as well as in combined state. Hydrogen is the source of the energy of the stars, including the sun. It undergoes nuclear fusion, which continuously takes place in the sun. This is the source of all energy on earth. Hydrogen may well help us overcome the present energy crisis without polluting our environment. In its reaction with oxygen, it produce large amount of energy and it gives only a non-polluting product...

Significant Digits

All measurements involve uncertainty. One source of this uncertainty is the measuring device itself.  Another source is your ability to perceive and interpret a reading. In fact, you cannot measure anything with complete certainty. The last (farthest right) digit in any measurement is always an estimate. The digits that you record when you measure something are called significant digits. Significant digits include the digits that you are certain about, and a final, uncertain digit that you estimate. Follow the rules below to identify the number of significant digits in a measurement. Rules for Determining Significant Digits: Rule 1: All non-zero numbers are significant. • 7.886 has four significant digits. • 19.4 has three significant digits. • 527.266 992 has nine significant digits. Rule 2: All zeros that are located between two non-zero  numbers are significant. • 408 has three significant digits. • 25 074 has five significant digits. Rule 3: Zeros th...